MiR-139-5p reverses CD44+/CD133+-associated multidrug resistance by downregulating NOTCH1 in colorectal carcinoma cells
نویسندگان
چکیده
MiRNAs may promote or inhibit tumor recurrence and drug resistance. MiR-139-5p is reportedly downregulated in colorectal cancer patient samples, but it is unknown whether and how miR-139-5p regulates drug resistance. Cancer stem cells (CSCs) are postulated to be important promoters of multiple drug resistance (MDR). In this study, we established a MDR cell model which strongly expressed the CSC-associated biomarkers CD44 and CD133. MiR-139-5p expression was reduced in MDR cell lines, while overexpression of miR-139-5p reversed CD44+/CD133+-associated MDR. We also identified NOTCH1, an important protein for stem cell maintenance and function, as a direct target of miR-139-5p, both in vitro and in a knockout mouse model. Notch1 expression was upregulated in tumor samples and inversely correlated with expression of miR-139-5p. Silencing NOTCH1 exerted an effect similar to overexpression of miR-139-5p by inhibiting the CD44+ and CD133+ population and reversing the drug-resistant phenotype. In conclusion, miR-139-5p downregulated NOTCH1 signaling to reverse CD44+/CD133+-associated MDR in colorectal cancer cells. Given this insight into the miRNA regulation of MDR, miR-139-5p could be a promising therapeutic target for colorectal cancer therapy.
منابع مشابه
miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2
MicroRNAs (miRNAs) are important regulators involved in various cancers, including colorectal cancer (CRC). The functions and mechanisms of the miRNAs involved in CRC progress and metastasis are largely unknown. In this study, miRNA microarray analysis was performed to screen crucial miRNAs involved in CRC progress, and miR-139-5p was chosen for further study. The functional roles of miR-139-5p...
متن کاملMicroRNA-93-5p increases multidrug resistance in human colorectal carcinoma cells by downregulating cyclin dependent kinase inhibitor 1A gene expression
Multidrug resistance (MDR) impedes successful chemotherapy in colorectal carcinoma (CRC) and emerging evidence suggests that microRNAs (miRs) are involved in the development of MDR. In the present study, the role of miR-93-5p in the modulation of drug resistance in CRC was investigated using HCT-8 and MDR HCT-8/vincristine (VCR) cell lines. The results demonstrated upregulated expression of miR...
متن کاملmiR-503-5p confers drug resistance by targeting PUMA in colorectal carcinoma
The development of multidrug-resistance (MDR) is a major contributor to death in colorectal carcinoma (CRC). Here, we investigated the possible role of microRNA (miR)-503-5p in drug resistant CRC cells. Unbiased microRNA array screening revealed that miR-503-5p is up-regulated in two oxaliplatin (OXA)-resistant CRC cell lines. Overexpression of miR-503-5p conferred resistance to OXA-induced apo...
متن کاملIsolation and characterization of proliferative, migratory and multidrug-resistant endometrial carcinoma-initiating cells from human type II endometrial carcinoma cell lines.
Although the highly proliferative, migratory and multidrug resistant phenotype of human type II endometrial carcinoma (EC) is well characterized, improved clinical treatments have not yet been developed. In this study, CD44 and CD133 were used as markers to screen, isolate and enrich carcinoma-initiating cells (CICs) from the human type II EC cell...
متن کاملmiR-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A.
PURPOSE miR-204-5p was found to be downregulated in colorectal cancer tissues in our preliminary microarray analyses. However, the function of miR-204-5p in colorectal cancer remains unknown. We therefore investigated the role, mechanism, and clinical significance of miR-204-5p in colorectal cancer development and progression. EXPERIMENTAL DESIGN We measured the expression of miR-204-5p and d...
متن کامل